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Diffusive transport in a one-dimensional disordered potential involving correlations
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This paper deals with transport properties of one-dimensional Brownian diffusion under the influence
of a correlated quenched random force, distributed as a two-level Poisson process. We find in particular
that large time scaling laws of the position of the Brownian particle are analogous to the uncorrelated
case. We also discuss the probability distribution of the stationary flux going through a sample between
two prescribed concentrations, which differs significantly from the uncorrelated case.

PACS number(s): 05.60.+w, 05.40.+j

Disorder significantly influences diffusive transport
phenomena [1-3]. Indeed, strong enough disorder does
not induce a simple renormalization for transport
coefficients of the corresponding pure system, but usually
generates ‘“anomalous diffusion” effects. The case of spa-
tially uncorrelated disordered media is now pretty well
understood. The effects of spatial correlations on the dy-
namics have been discussed for the directed random walk
problem [4]. More recently, the response to an external
applied force has been studied for the one-dimensional
case of a Brownian particle diffusing under the influence
of a quenched random force {F(x)} [5]. For a sample
characterized by some particular realization of the sto-
chastic process {F(x)}, the diffusion is defined by the fol-
lowing Fokker-Planck equation for the probability densi-
ty P(x,t|x4,0)
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In this paper, we analyze in detail transport properties of
this model in the case where {F(x)} is distributed as a
two-level Poisson process.

Let us define more precisely the model of disorder we
consider and some of its properties. We assume that the
quenched random force F(x) takes alternatively a posi-
tive value ¢,>0 and a negative value —¢, <0 on inter-
vals whose lengths are independent random variables dis-
tributed according to the following probability densities,
respectively,
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The parameters 1/n, and 1/n; are, respectively, the
mean length of intervals { F(x)=¢,} and the mean length
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of intervals {F(x)=—¢,;}. This choice of exponential
distributions for f, and f, is, in fact, the only one that
makes the process { F(x)} Markovian. This property en-
ables us to write differential equations for the probability

Po(x) to have F(x)=¢, and the probability
P1(x)=1—py(x) to have F(x)=—¢,.
9po
§‘=~n0P0+"1P1=n1'_(n0+"1)Po )
(3)
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The mean value F, and the two point correlation func-
tion G (x) of the process { F(x)} read
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The  corresponding random  potential U(x)

=— f *F(y)dy seen by the Brownian particle presents an
alternance of positive and negative slopes of random
lengths as sketched in Fig. 1.

The fundamental random variable associated with clas-
sical diffusion under the action of a quenched random
force presenting a strictly positive mean ( F(x))=F,>0,
is the exponential functional of the random potential
Ul(x)
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Indeed, the probability distribution of the functional 7
determines the large time anomalous behavior of the
Brownian particle position [3]. In particular, the velocity
defined for each sample as

d +
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is a self-averaging quantity [6] (for any homogeneous ran-
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FIG. 1. Example of the random potential U(x) seen by the
Brownian particle when the random force {F} is a two-level
Poisson process.

dom potential presenting only short-range correlations)
inversely proportional to the first moment of 7, [3]
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When the quenched random force is distributed with the
Gaussian measure

—L rax[Fr0—F,
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the probability distribution 2 (7) of the functional 7,
reads in terms of a=0$%/2 and u=2F,/Bo >0 [3]
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The algebraic decay at large = explains all the dynamical
phase transitions between different anomalous behaviors
known for this model [3]. In particular, Eq. (7) implies
that the value u=1 separates a phase of vanishing veloci-
ty V=0 for O<u <1, and a phase of finite velocity ¥ >0
for u>1. Another interesting physical quantity is the
stationary current Jy which goes through a disordered
sample of length N between a fixed concentration P, and
a trap described by the boundary condition Py =0 [7,8].
In the limit N— o, the stationary flux J_ is simply a
random variable inversely proportional to the functional
Tw

Jo= . (10

Note that unlike the velocity ¥V, this flux is not a self-
averaging quantity, but must be described by its full
probability distribution.

It is very convenient to introduce the more general
functional

b
T(x,b)=f dy eﬁ[U(y)—U(x)]
x

_ ¥y
=fbdye B[ Fudu (1)
x
and to consider the random variable 7, as the limit of

this process as x — —

= lim 7(x,b) . (12)
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The evolution of the functional 7(x,b) is governed by the
stochastic differential equation
O — BF (x)r(x,b)—1 . (13)
ox
The stochastic term F(x) appears multiplicatively, so
that the fluctuations of the random force are coupled to
the values taken by the random process 7(x,b) itself.
When the random force {F} is distributed as a white
noise (8), the multiplicative stochastic process 7(x,b) can
be, in fact, related to Brownian motion on a surface of
constant negative curvature [9].

We now compute the probability distribution of the
functional 7, when the quenched random force { F(x)} is
a two-level Poisson process, and compare it with the re-
sult (9) for the white noise case. The random variable 7,
only exists if the force mean value F|, is strictly positive

LS )
(ng+n ) Fo=¢on, —¢ny>0 thatis ———>0
1 0

(14)

that we assume from now on. Note that the random vari-

able 7(x,b) remains confined in an interval
[ Tmin(%, ), Tmax(x, )] depending on the length (b —x)
) —By(b—x)
b —Bly—x)_ 1—e
LS(x,b)= | d =
5,01 [y e B0 15)
B, (b —x)
_[® +Bp,(y—x)__ e —1
ab - d - .
Ton(x,0)= [ dy e B,

This is very different from the white noise case, where the
random force is not bounded. Even in the limit where
the interval length (b —x) tends to infinity, the support of
the random variable 7, is not [0,+ ], but
[1/B¢o, + 0 ].

The two-level Poisson process {F} is Markovian; so ac-
cording to the local evolution equation (13), the coupled
process {F(x),7(x)} is still Markovian. Let us define the
joint laws

Py(7,x)d7=Prob {F(x)=¢, and 7(x,b)E[1,7+d 7]},
(16)

P(7,x)dT=Prob {F(x)=—¢, and 7(x,b)E[71,7+d 7]} .

They evolve according to the two coupled Master equa-
tions

oP, P
——= —E[(I—B¢OT)P0]—n0PO+n1P1 , -
aP,

3
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Stationary distributions Py(7) and P,(7) in the limit
X — — o are, therefore, the solutions of the system

d
‘E';[(B¢0T—1)P0]—noPo+n1P1 =0,

(18)
%[(BQSXT-}-UP,]—noP0+n1P1=0 ,
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respectively, normalized on the interval [1/B¢,, + « ] by

oo _ nl
fVB%PO(T)dT— Py
and (19)
no
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where
g0 (v, +1)
n0+n1 F(Vo"i'l)r(vl—"\/o)

Yi™%

(7'0+7'1)

Moments of order k of these distributions diverge as soon
as k Zv=(v;—wv,). They read otherwise in polynomial
forms as

n
[ k _ 1
It is convenient to set 7o=1/Bd, 7,=1/Bd,, vo=n,To, fo d7 7 Po(7)= no+n,
'V1=n17'1, and
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vV=v,—vy=—= |——— [>0 (20) To
PO B e ¢
© 0
which is strictly positive according to the hypothesis f o dr7°P(1)= ne+n
Fy>0 (14). The solutions of (18) and (19) read, using o
Heaviside function 9, X T
X7oF | —k,vo+ 1,1 +vg—v;;1+— |,
(T—To)vo_l To
Py(m)=A06(Tt—y)
(r+7)1! 22)
where where F(a,b,c,z) denotes the hypergeometric function.
n T'(v,) _ The velocity can be directly deduced from the first mo-
— + Y17 tof r, (7
notn I‘(vo)l“(vl—vo)(To 7y) , men 1o T 1( ) 1
and ] 21) —V—=30—(rw)=D—0fo drt[Py(T)+P,(1)]. (23)
(1—79)°
P(T)=B6(r—1,) OV 5 There exists, therefore, a dynamical phase transition at
(r+7)"! v=(v;—vy)=1.
J
V=0ifv<l,
Dy(v—1)
y=—o - ifv>1. (24)
1 0
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More generally, the algebraic decay of the distributions
Py 1 (7) in the limit 7— oo

P o
O,I(T)Tﬂco 7'1+V
with
1 |n n
e

will generate the same succession of anomalous diffusion
behaviors for the cumulants of the Brownian particle po-
sition as a function of the parameter v, as the one that ap-
pears in the white noise case as a function of the parame-
ter pu [3]. In particular, the thermal average of the posi-
tion of the particle will grow linearly in time only in the
finite velocity phase

0= [ Tdx xP(x,tlx0,0) < Vt ifv>1. (26)
— o0 t—

[

However, in the vanishing velocity phase, the thermal
average of the position will grow slower than linearly, as
a power of time with the exponent v which depends con-
tinuously on the parameters of the disorder

0= [ " 7dx xP(x,t]x0,0) « ¥ if0<v<l. @7
— o t— ©

Let us now consider the stationary flux J, going

through a sample between two concentrations P, >0 and

Py =0 in the limit N— . The change of variable (10)

gives immediately the two joint laws 7y(J) and P(J)

from result (21), with the notations J,=DyP,/7, and
Jl :D‘)Po /Tl

vo—1

monmt Jo=H 7

Po()=AOJ)O(Jy—I)J »
(J,+N!
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P =BT —J)J —
J+D"
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FIG. 2. Examples of flux probability distributions Py(J)
(straight line) and P,(J) (dashed line) in the vanishing velocity
phase 0 <v <1 for (a) v < 1; (b) vo> 1.

where A and B are two normalization constants. These
two distributions for the flux are concentrated on the
bounded interval [0,J,]. the transition at v=v,—v,=1
for the self-averaging velocity (24) corresponds for the
flux probability distributions to a transition of the
behavior in the limit J—0

?0,1(-,)]0:0.,1’_1—)‘*"00 if v<1 s

Po,l(J)JOCOJV—l—’O if v> l .

The vanishing velocity phase v=v;—v,<1 is character-
ized by the divergence of 7, and P, at the origin J—0.
On the contrary in the finite velocity phase v>1, the
probability distributions of the flux vanish at the origin.

Some curves P, (J) are drawn in Figs. 2 and 3 for
different values of the parameters. They illustrate, in par-
ticular, the transitions at v=1 we just mentioned (29) and
the transition at vy=1 for the behavior of Py(J) as
J—J,. We refer to the figures in [8] for comparison with
the uncorrelated case.

In this paper, we have analyzed some properties of
anomalous diffusion in a random medium described by a
quenched random force {F} distributed as a two-level
Poisson process. In particular, we showed that there ex-
ists a dimensionless parameter v, which governs the
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FIG. 3. Examples of flux probability distributions 2y(J)
(straight line) and P,(J) (dashed line) in the finite velocity phase
v>1for (a) vo<1; (b) vo> 1.

asymptotic behaviors of the probability distributions
Py (7) in the limit 7— . As a result, this parameter v
also controls the dynamical phase transition for the ve-
locity and the behaviors of the probability distributions
Py 1(J) of the flux in the limit J—0. All this is qualita-
tively the same as what is known in the white noise case.
However, the probability distributions for the random
variable 7, and for the stationary flux J_, are very
different from the white noise case outside the asymptotic
regimes 7— o0 and J—0. Indeed, they present restricted
supports, as a consequence of the bounded character of
the random force, and they are given in terms of only ra-
tional functions and no exponential.

More generally, the two-level Poisson process we con-
sidered is a technically very convenient disorder model,
since it allows analytical studies despite the presence of
correlations. It has already been used in various con-
texts, such as one-dimensional quantum localization
[10,11], nonlinear systems coupled to a random environ-
ment [12], and noise-induced perturbations on Josephson
junctions [13]. The limitation to two-level processes
simplifies computations, but the approach can be general-
ized to any finite number of levels for the random process
[14].

I wish to thank Alain Comtet for many helpful discus-
sions and for his remarks on the manuscript.
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